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Recent controlled experiments by Kachanov & Levchenko (1984) and others indicate 
that, during some slower kinds of transition to turbulence in boundary layers, 
three-dimensionality can come into play initially as a resonant-triad phenomenon, 
depending on the disturbance sizes present. The triad interaction, suggested theor- 
etically in the boundary-layer context by Craik (1971) and others, is studied in the 
present work by means of multi-structured analysis for high characteristic Reynolds 
numbers. A finite-amplitude/relatively high-frequency approach leads rationally to 
the nonlinear triad equations, solutions for which are then obtained analytically and 
computationally in certain central cases of interest (temporal and spatial). The 
solutions have a rather chaotic spiky appearance as continual energy exchange 
develops between the two- and three-dimensional nonlinear modes, whose large-scale 
response seems governed by inviscid dynamics but subject to important, continual 
‘ rejuvenation ’ from small- (fast-) scale viscous action in-between. The three- 
dimensipnal growth rate is thereby increased, but not the two-dimensional. Subse- 
quently the disturbed flow enters EL higher-amplitude regime similar to that studied 
in some related papers by the authors and co-workers. Comparisons with the 
experiments are very supportive of the theory (in the small and in the large), yielding 
both qualitative and quantitative agreement. 

1. Introduction 
Our concern in this paper and in some related studies mentioned below is with 

various types of boundary-layer transition to turbulence, of which there would seem 
to be quite a number depending on how the transition is initiated. The current study 
is on resonant-triad interactions in particular. 

The possibility of the resonant-triad interaction or nonlinear instability in boun- 
dary layers was put forward theoretically by Craik (1971) (see also Raetz 1959; 
Volodin & Zelman 1978), who proposed that a two-dimensional Tollmien-Schlichting 
(TS) wave could interact nonlinearly with two oblique three-dimensional TS waves, 
in such a way that the nonlinear interplay reinforces all three waves. Significantly, 
this was envisaged as occurring at the (amplitude)2 order, i.e. ‘sooner’ than the 
(ampl i t~de)~  order of more traditional nonlinear theory. Craik (1971) and later Usher 
& Craik (1975) and Craik (1978, 1985) gave some supporting analysis, based on 
guesses or approximations for the interaction coefficients, to illustrate the kind of 
interplay that might take place. Very recently, careful experimental measurements 
by Kachanov & Levchenko (1982, 1984), Saric, Kozlov & Levchenko (1984), Saric 
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& Thomas (1984) and references therein, essentially in boundary layers on flat plates, 
have tended to add considerable weight to Craik’s fascinating suggestion, with typical 
triad formations and the associated growth of subharmonics being observed in 
unstable boundary layers just prior to transition. Professor M. Gaster (private 
communication, 1985) also reports significant effects of the (amplitude)2 sort arising 
in experimental studies. 

The aim in the present work is among other things to investigate on a more rational 
footing the possibility of such resonant-triad interactions arising in an incompressible 
boundary layer at high Reynolds number Re, and then to examine the triad properties 
theoretically and compare these with experiments. Like Smith & Burggraf (1985) and 
Smith (1986a,b), who give the background and scalings involved, we choose to 
address first the local nonlinear unsteady triple-deck problem since it describes the 
first nonlinear growth of TS disturbances. The scaled governing equations in three 
dimensions are therefore 

au av aw 
ax ay az -+-+- = 0, (l . la)  

( l . l b )  

( l . l c )  

and the appropriate boundary conditions include 

U = V =  W = O  at Y = O ,  ( l . ld )  

U -  Y + A ( X , Z , T ) ,  W+O, as Y+m, ( l . l e )  

Here the three-dimensional boundary-layer equations (1.1 a-c) apply in the lower 
deck, close to the plate surface, where the no-slip condition (1.1 d) and the displace- 
ment condition (1.1 e) hold, whereas the pressure-displacement law (1 .If) stems from 
the potential-flow properties in the upper deck outside the original O( Re-i) boundary 
layer. Also, both the pressure P and the displacement decrement A are unknown 
functions of X, 2, T, and the domain of interest is - 00 < X < 00, 0 < Y < 00, 

- 00 < 2 < 00, owing to the length scalings noted by Smith & Burggraf (1985) and 
Smith (1986a, b). We consider then, typically, the unsteady nonlinear effects 
produced downstream by a fixed-frequency forcing, or range of frequencies, present 
upstream. 

As an aside, we remark here that the same (relatively high-frequency) flow 
properties emerge from the scaled system (1 .l) as from addressing the Navier-Stokes 
equations instead with typical non-dimensional pressure levels of order Re-f and 

FIGURE 1.  (a) A comparison of the typical range (shown shaded) of frequencies and positions 5 (or 
Reynolds numbers R, based on d) covered by multi-structured nonlinear theory, with the typical 
range ( 1-1 ) of the nonlinear-disturbance experiments by Kachanov & Levchenko (1984) [see also 
Saric et al. (1984) and figure 7 below]. Also shown are earlier linear-disturbance properties, for 
comparison : 0, ‘linear ’ experiments ; -. - , linear triple-deck theory from Smith (1979) ; -, 
Orr-Sommerfeld linear calculations, read from Kachanov & Levchenko (1984). ( b )  Schematic 
diagram of the three-dimensional triple-deck structure for the nonlinear two- and three-dimensional 
waves forming the resonant triad, with ere, = W”, in an originally two-dimensional boundary layer. 
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non-dimensional time variations between O(Re-i) and O(Re-4). The system (l . l) ,  
however, is a convenient and in some ways essential starting point : see also comments 
at the start of $2 below and figure 1.  Another aside concerns the practical relevance 
of asymptotic approaches of the kind used here but this aspect is largely covered 
already in other studies, by Smith (1979), Smith, Papageorgiou & Elliott (1984), 
Goldstein (1985), Pedley & Stephanoff (1985) and the present work, for instance, 
which demonstrate the usefulness of asymptotics in reality, i.e. in numerical terms 
at finite Reynolds numbers. 

In  $2 the system (1.1) is analysed for nonlinear disturbances of relatively high 
frequencies and finite amplitudes. Here we should stress again the point made in some 
of the references above, that the relatively high frequencies 0 x la/afl correspond 
either to increased downstream movement of the whole triple-deck interaction, or 
alternatively to enhanced frequencies input upstream ; both of these alternative 
interpretations are physically meaningful. Provided the large scaled frequency Jz 
remains less than O(Rei) the triple-deck structure remains essentially intact, as 
described in the references mentioned above. For an incoming two-dimensional TS 
wave, the resonant triad then provokes two subharmonic three-dimensional waves 
travelling at  an angle 

ere, = 600 (L2) 

to the free stream, as indeed Craik (1971) notes. The coupled nonlinear evolution 
equations of the triad are derived in 52. We observe here, in passing, that a resonant 
triad cannot be set up closer to the lower-branch neutral position further upstream, 
at finite values of 0, because of the dispersion relation 

co 
Ai‘ (Eo)  = eiXl6 (i2 +$):a* I Ai (q) dq (1.3) 

50 

for small-amplitude waves proportional to exp (i&X + $2- iQT), with O( 1 )  stream- 
wise and spanwise wavenumbers &, B, and effective frequency 0, where 
6, = 0 exp (-5ix/6) &-t and Ai stands for the Airy function. Section 3 presents 
computational solutions for the central case of temporal triad growth, similar in fact 
to streamwise spatial growth for which solutions are presented in $5. The growth of 
all three waves becomes remarkably ‘spiky’ as time increases, and a large-time/far- 
downstream analysis ($4) describes the continual exchange of energy and the 
viscous-inviscid nature of the spikes produced. Further discussion, and a spatial 
solution, are given in $5.  

Overall, the present study fully supports Craik’s (1971) original suggestion, and 
puts it on a more rational foundation, we believe. The interaction coefficients, 
however, found in $2, are such that the finite-time or -distance breakdown also 
postulated by Craik cannot occur, at least in the present regime. Instead, the eventual 
growth rate is the same as in linear two-dimensional theory, as $4 and the Appendix 
show. Thus, although the nonlinear-triad interplay does occur ‘soon’, at quite low 
amplitudes, and then does enhance the growth of the three-dimensional components 
of the disturbance, the eventual outcome of the interaction is that the developing 
disturbance appears to move on, next, into a higher-amplitude regime which is much 
(although not entirely) as in the two-dimensional case of Smith (1986a), and this is 
addressed in a companion study (Smith 19863). This later regime produces signifi- 
cantly stronger growth. 

Alternative nonlinear three-dimensional interactions, and comparisons with the 
recent experiments on slower transition, are also discussed in 55. The experimental 
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comparisons seem very encouraging (on the small- and the large-scale behaviour), 
yielding both qualitative and quantitative agreement. 

2. The resonant-triad interaction 
The nonlinear system (1.1) is studied here for finite amplitudes of pressure IpI and 

high frequencies Q[x la/afl], for two main reasons. First, the experiments referred 
to in $ 1 tend to indicate that the possible formation of triads is quite far downstream 
of the lower-branch neutral curve (see figures 1 4  of Saric et al. (1984), and our figure 
1 ), which corresponds to increased 52 in our scalings. Secondly, high-frequency 
properties can shed much light analytically (Smith & Burggraf 1985; Smith 1986a, b) 
on the whole ensuing transition process, we feel, as opposed perhaps to the full system 
(1 .l) which in general requires quite large-scale computational efforts, although again 
the full system (1 .1)  undoubtedly represents a most significant step in transition. 

After some preliminary order-of-magnitude estimates, the multiple scales 

a a a  -+a -+-+ ..., 
aT aTo aT, 

a a a -+a -+ 52-t -+ . . . , 
ax ax, ax, 

a a a -+a -+a+ -+ ... 
az az, az, 

(2 .14 

(2.1 b)  

(2.lc) 

are implied, cf. the three references just above and $5.  Here 

(X, 2) = Q-t(X, ,  2,) = S2t(X,, Z,), T = 52-'T0 = T,, 

and so on, and the expansions below proceed in inverse powers of 52. Bearing in mind 
the general eigenrelation in (1.3) for linear three-dimensional waves, and in particular 
its high-frequency form 

at leading order, we take (&,B) = a(a,P)  to leading order and consider three 
nonlinear waves proportional to 

El = exp [iaXo -iTo] (two-dimensional), ( 2 . 3 ~ )  

E,, E, = exp [!$a X, & ibZ0 - +i To] (2.3b, c) 

These form a resonant triad at  (amplitude)e order since, for example, the nonlinear 
combination E, E, reproduces the two-dimensional wave El : 

E, E3 = El. (2.3d) 

For the two-dimensional wave ( 2 . 3 ~ )  and the subharmonics (2.3b, c) to be able to start 
as TS waves, however, (2.2) then requires that 

a(&+$) = 8 2  (2.2) 

(three-dimensional). 

a = l ,  b=,, d3 

because to leading order we have, in (2.2), (&, 8, a)+ (&&, +/3a, $2) for E,, E, and 
(&, B,Q) + (aa, 0, 52) for El.  So, from (2.4), the three-dimensional waves in (2.3 b, c) 
are inclined at an angle to the free-stream direction of 

ere. = 600, (2.5) 
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as Craik (1971) notes. The accompanying pressure and negative displacement 

expansions are P = P,+rR-'P,+ ...) (2.6a) 

A = SZ-L4,+SZ-L4,+ ..., (2.6b) 

where Po, A, contain the three waves of (2.3), 

= A O l ) E l + ( P 0 2 , A 0 , ) E , + ( P 0 3 ,  A03)E3+c'c',  (2.7) 

while P,, A, are produced by nonlinear interactions and so have the forms 

('27 = (pZl ,  '21) + (pZ23 E2 + ('23, A23) E3 + '." 
+[other products of E?l, E$l, E;'] (2.8) 

in view of (3 .24 .  Here C.C. denotes the complex conjugate. We observe that the main 
pressure P in ( 2 . 6 ~ )  and the corresponding disturbance amplitudes below are much 
less, for this triad interaction, than in the nonlinear response studied by Smith & 
Burggraf (1985) and Smith ( 1 9 8 6 ~ )  for two-dimensional flows and Smith (1986b) for 
three-dimensional properties; this indeed is the potential power of the three- 
dimensional triad interaction. Another observation here is that a mean-flow 
correction arises among the other terms in (2.8) but this correction, although 
awkward to  evaluate, does not influence the triad interaction below to any significant 
extent. 

Two regions I, I1 in the Y-direction then need to be investigated. 

2.1. The Stokes layer I 
In the thin viscous Stokes layer I, y = Q-ig with g of 0(1), and the velocity field has 
the form 

As mentioned before, the disturbance amplitude here does not need to  be as large 
as in the amplitude-cubed-interaction cases of the three last-named papers for 
nonlinear effects to  matter. I n  fact the disturbance is comparable in size with the 
original basic flow, with 

(2.10) 

(U, v, W) = 0-i( u,, v,, Wo) + a-t( u,, v,, W,) + .. . . (2.9) 

U, = (U,,  El + U,, E, + Uo3 E3) + C.C. + UOM, 

and similarly for V,, W,; here U,, = jj gives the important basic motion, from (1  . l ) ,  
and VOM = W,, = 0. Also, since El is the incoming two-dimensional wave, W,, = 0. 

The governing equations for the dominant velocities in layer I form an unsteady 
pressure gradienbviscous force balance throughout, 

-iUol = -iPol+- a2u01 

ag2 
(2.11 a) 

-ti u,, = -ti Po,+- a 2 u 0 2  -ti W,, = - i i p P , , + ~ ,  a2 w02 (2.1 1 b, c) 
agz a Y  

-ti u,, = -ti Po,+,, a 2 u 0 3  -+i Wo3 = +$Po,+- w03 (2.11 d,  e )  
aY agz * 

along with the continuity equations 

(2.1 lf-h) 
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from (1.1). The solutions satisfying the no-slip conditions at g = 0 and appropriate 
boundedness as fj + a are therefore 

uO1 = pO1(l-em@), u02, 3 = 3(1-ea@), (2.12) 

w,,,3 = +2/9p,,, 3(1-e"@), (2.13) 

where m = exp (3xi/4) [ = 64/21. 

effects involving (U,, V,, W,) from (1.1). If 
At the next order, the governing equations for (U, ,  V,, W,) pick up nonlinear inertial 

U,  = (U,, El + U,, E, + U,, E3) + C.C. + [other nonlinear terms] (2.15) 

and similarly for V,, W,, then, with (U,, V, , W,) given in (2.10)-(2.14), the following 
successive equations hold : 

Continuity : 

(2.16b) 

X-momentum : 
-iU,, + (1 -em@) -+ ap01 iPo2 Po,( 1 -ea@), ( I  -482) 

aT2 

+i6P02P03 ea* g-:+-; (a+$)+iP,, -gem@+--- 
( m m  ea@ 7 ( em@ m m  '> 

Z-momentum : 

(2 .18~)  

for n = 2,3, where (2.3d) has been used and * denotes the complex conjugate. As far 
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as the subsequent working is concerned, however, only the large-# forms emerging 
from (2.17) and (2.18) are needed, and these are 

apO1l * ap01 Po1 u,, + [ - 1 aT, + P,, pO3( 1 - 4 ~ )  - - + P2, - i - 
m ax2 

U,, - - 4,PP0, i j +  - 2i -+Pol PZ3, - (1 [ %: 
( 2 . 1 9 ~ )  

apOnl P 
t 4b2) + P2, - 2i - 

?ii ax2 

(2.19b) 

(2 .19~)  

for i j  + 00. The above forms are to be matched to the outer region I1 discussed next. 

2.2. The outer region I I  
This outer region I1 is mainly inviscid, containing a critical layer, and is required 
as a non-trivial buffer between the Stokes layer and the outer constraints in (1.1). 
In  region I1 we have Y = @fj with 9 now of order unity, and the velocity expansions 

u= @g+a-:oo++--t02+ ..., v =  l.2q0+Q-W2+ ..., (2.20u,b) 

w = a-1mo+a-fv2+... . 

0 0  = ( O o l ~ l +  OOZE,+ O ~ ~ E ~ ) + C . C . ,  

(2.20 c ) 

(2.214 

Here the successive components split up into the three waves of (2.3u-c) in the 
manner 

o2 = ( 021 El + 022 E2+ O,, E3) + C.C. + [other nonlinear terms], (2.21 b) 

with similar expressions for the P and m. The dominant terms are then controlled, 
from substitution into (l.l), by the equations 

iOol+7 avo1 - - 0, i(9-1) Ool+ Pol = -iPol, (2.224 
a Y  

i i(g-l)  w02, 3 = TibpO2, 3 9  
(2.22c) 

representing the dominant unsteady inertial-pressure gradient balances. The critical 
layer occurs at 9 = 1 throughout, but is a passive affair as in Smith & Burggraf (1985) 
and Smith (1986a, b). 

The solutions of (2.22) satisfying the required outer constraints in (1.1) follow as 

(2.23 a) Ool = Aol, pol = -iAol @( mol = 0) ,  

2Bpo21 3, Po2, = -?jiAo2, 9 ,  (2.236, c) 4PPo2 3 

(9-  1) 
O02,3 = A02,3 + ( ~ - 1 j  9 '02,3 = 

while the merging with the earlier Stokes-layer solutions as 9 --f 0 + yields 

A01 = pol, A02.3 = (1 +4P2) p02 ,  3, 

which are the first pressure-displacement relations. 

(2.23 d) 
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Nonlinear effects again enter the reckoning at the next order, where the controlling 
equations of concern are the following : 

Continuity : 

(2 .24~)  

(2.243, c )  

X-momentum : 

i(g- 1) 02,+-+g a001 -+ a'01 VZl aT2 ax, 
a '03 a '02 a',, 

a Y  ax2 
+{i002 '03+ vo2 ag+ vO3 7 - i p w O 2  oOt,,+ip~,, o,,} = -ip2,--, (2.25a) 

Z-momentum : 

(2.26a) i ( i -  1) w21+bi002 wo3+iioO3 qO2+ vo2 ag+ a w03 vO3 = -- 
a 2 2  

Here the nonlinearly induced effects are shown in curly brackets. Also, the join with 
the outer constraints of (1.1) and with the Stokes layer, respectively, requires that 

0 2 n + ~ z n 7  @2n+o ,  as g+wo, (2 .27~)  

asg+O+, (2.27 b) I 0 2 n + U 2 n m 9  @2n+W2nm 

- iPol '02 3 
v 2 1 + 7  9 v22, 3+-2i(a+82)  

for n = 1,2,3, where Ulna,  W2,, stand for the O(1) contributions shown in square 
brackets in (2.19). The conditions on Ozn, v2n are applied below. The rest of the 
matching then goes through satisfactorily, including the non-zero contributions to 
the. in (2.27b), bringing in the viscous-sublayer displacements, from (2.14), which 
are ultimately responsible for the growth terms in the amplitude equations of $2.3 
below. 

The flow solutions satisfying the outer constraints (2 .27~)  are therefore of the form 

(2.28a) 

c21 (2.283) 

021 = ~ , , + 0 ~ , ( 9 -  1)-2+d2,(g- 1)-3, 

with - 8 P ( l + 4 ~ ) p 0 2 ~ 0 3 ,  

'21 -!P(' + 12$) '02 '03 
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ti,, +_ zpw,,  = A,, + B2,(g - 1 ) - I  + &,,(g - 1 )-z + z5,,(g - 1)-3, 

with 

(2.28 c )  

(2.28d) 

(2.29) 

2.3. The pressure-displacement interaction, and the triad-amplitude equations 
The pressure-displacement interaction law in ( 1  .lfl now provides the relations, 
complementary to (2 .23d) ,  (2.29),  to determine the triad equations. From (1.18, 
with the substitutions (2 .1) ,  (2 .6) ,  we find, first, exactly the relations (2 .23d)  again, 
thus verifying the values of a,/3 in (2 .4) .  Secondly, we have the relations 

( 2 . 3 0 ~ )  iapo1 - aAo1 
ax2 ax2 

- P,, +- - -A,, + 2i -, 

- (a + p)t Pzn + i(a + /P) -4 (f + P 5) = - a ~ , ,  + i ~ aAon (2.30b) 
2 ax,- az, ax2 

for n = 2 , 3  respectively. 
When (2 .30a,b)  are coupled with (2.29) and the definitions in (2 .283 ,d) ,  the P,, 

and A,, contributions cancel out for n = 1 , 2 , 3 ,  as expected, leaving the nonlinear 
amplitide 

- 

( 2 . 3 1 ~ )  

(2.31 b )  

(2.31 c )  

of the resonant triad for Pol, Po2, Po3, after some manipulation. Here the linear terms 
contained in (2.31) all agree with, and could be derived directly from, a higher-order 
version of (2 .2)  in which the term Q2, on the right-hand side of (2 .2) ,  is multiplied 
by [ 1 +  2aQ-t exp (57ri/4) + 0(a2Q-3)] to incorporate the relatively slow growth 
present. The linear terms above also show the group velocities of the individual waves 
(2.3a-c) appearing, via the left-hand sides in (2.31),  while the linear growth terms 
proportional to ( 1  - i) on the right-hand sides are due to viscous effects. The nonlinear 
(amplitude), terms, in contrast, stemming mainly from region 11, seem to require the 
fuller derivation given in $82.1, 2.2, which also helps to emphasize the rich structure 
of the present flow regime. These nonlinear terms (in (2 .31))  have one essential 
difference from the forms suggested in Craik (1971).  It is that their coefficients are 
all purely imaginary and equisigned. This tends to rule out a number of the nonlinear 
responses conjectured by Craik, including the possibility of a finite-time or -space 
breakdown. 

Extensions and other aspects of the amplitude equations (2.31a-c) and certain 
special cases are mentioned in $5 below. For now, however, as a start, attention is 
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TI 

FIGURE 2. Numerical solutions of the temporal resonant-triad equations (3.la-c), with Po, + Po, 
(see also the spatial case in figure 6). Here A = 0.00000625 and the plot interval is 0.0125, i.e. the 
results a t  every 2000th time step are plotted. Initial values are Pol, z, , = 0,5,1, respectively. Shown 
me (4 IPOll? (a) I P O Z L  (4 P O S L  

focused on the special case of plane waves where the spatial derivatives in X,, 2, are 
absent (see further comments on the spatial problem in § 5 ) ,  and (2.31 a-c) then reduce 
to a set of coupled nonlinear ordinary differential equations for Pol, Po,, Po3, defining 
one central class of resonant triads. 

3. Numerical method and results 

ordinary differential system 
If the X, and 2, dependence is absent, (2.31 u-c) reduce to the nonlinear complex 

(3.la) 

(3.lb) 

( 3 . 1 ~ )  
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FIGURE 3. Numerical solutions of (3.1), with Po8 = Pee, for various time steps A (see also the spatial 
case in figure 6). The plot interval is 0.025 throughout and the initial values are Pol, = 1 +i,  0.5. 
(a), (b )  give IPoll, lPo,l respectively for A = 0.00005; (c), (d) as (a), ( b )  but A = 0.000025; (e), ( f )  
aa (a), ( b )  but A = 0.0000125. 

which we address numerically here. A simple second-order predictor-corrector 
scheme was used to obtain computational results for various starting conditions at 
time T, = 0. For each small time step A ,  the predictor and corrector parts take the 
form 

(3.2a) 
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2~ 104 

t 
P o l l  

n 
" I  

1 1.218 75 1 1.222 75 

TI 

(4 

8 

9 

0 
t 

-8  

11.218 75 11.22275 

TI 

(4 

t 
IPOll 

0 
1 1.21875 11.222 75 

TX 

8 x  10' 

t 
IPPXl 

0 
11.218 75 . 11.22275 

11.21875 1 1.222 75 

TX 

cn 

1 I _  

1 1.21 8 75 11.22275 

FIQURE 4a-f. For caption see next page. 
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% %  
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Time, TE 

FIQIJRE 4. Close-up views of computational solutions of the temporal case (3.1), with Po3 = Po2. (a) 
lPoll; (b) lPozl; ( c )  phase function q5; plot interval is refined to exactly A.  (d) ,  (e) and ( f )  are as in 
(a)-(c) but with A doubled to 0.0000125. Notice that the computed q5 (= 2v,-vv,) jumps by +21t 
or +4n whenever the arguments u, or Y, are switched through 2rc by the machine-based argument 
function. (8)  Local maxima and minima of In ( IPo,l) [marked ( i ) ,  (2) respectively] during three time 
ranges: results 0,  x ,  A = 0.0000125; A, A doubled; ---, the large-time prediction (4.14) for the 
growth rate. Initial values here are Pol, = 0,5. 

for (3 . la) ,  and similarly for (3 . lb ,c ) ;  and 

- 2iPo,-pred Po,-pred 1 , - i) Pol-pred 

4 2  
Pol-corr = i(Pol-pred+z)++A [" 

(3.2b) 

with similar formulae for (3 . lb,c)  again. Here P,, (n = 1,2,3)  denote the known 
values at the previous time level. 

Representative numerical solutions are presented in figures 2 4 .  In some of these 
we took Po, = Poz,t partly to reduce the computational task and partly to compare 
directly with the analysis of the next section. Throughout, the solutions for 
Pol, Po,, Po3 all develop a highly spiked and erratic appearance, as time T, advances, 
accompanied by fairly rapid growth of the maximum amplitude attained in each 
spike. The computer plotting of the results had to be done with some care, with regard 
to the plot density, to capture the spiky behaviour successfully, as the figures 

t The same results were obtained, to within machine accuracy, by setting Po,, Po, equal at time 
T, = 0 in the system (3.1 a-c), thus illustrating secondary stability. See also comments in $5. 
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indicate. [Further results concerning this aspect are given in a 1986 United Tech. 
Res. Cent., East Hartford, Conn., U.S.A., Report by the authors.] The figures also 
show the effects of altering the time step A ,  typically about lop5, which overall seems 
adequate for determining the trends of the flow solution: see also the later figures. 

4. The behaviour at large times/far downstream 
To simplify matters here we consider first the case where Po, and Po3 are identical 

(in fact, this turns out to be almost the general case, at large times, as described at 
the end of this section). Then, with the definitions 

(4 .1)  Po, E R, exp (iv,), Po, = Po, = R,  exp (iv,), Q = 2v,-vv,, 

the governing equations (3.1) reduce to the real coupled system 

1 -- dR1 - - R, + 2Ri sin Q, 

= +R, - ;R, R, sin 9, 

dT2 d 2  

dT2 

(4 .2a)  

(4.2b) 

( 4 . 2 ~ )  

for the real functions R,, R,, Q, where K = (1 - l / d 2 )  is positive. A similar simplifi- 
cation occurs if lPo21 = IPo,I. 

The aim now is to describe the large-time response of (4.2), or the large-distance 
response in the spatial case referred to later in $5.  The proposal below is that the 
amplitudes R,  ( = lPoll ) and R, ( = lPo21 ) typically then both grow exponentially fast, 
proportional to exp [aT,], say, where a is an unknown 0(1) positive constant, but 
with an increasingly fast (spiky) dependence on exp [aT,] emerging as well. Other 
asymptotic forms can also be written but generally are unattainable from most initial 
values, we believe. In  particular, a promising account that we tried has O R 1 ,  O R , ,  Q. 
being dependent only on s at large times, where s = exp (aT,); this proved unat- 
tainable in general but it did help in pointing to the final proposed form below. The 
proposal is that the solution settles into a pattern of recycling states (i)-(iv) when 
T, % 1, as depicted in figure 5. 

In the first of the recycling states, (i), the expansions holding are 

R,  = sff,(s) + . . ., R, = s&s) + .. ., Q = i.11: +s-l6(s) + . .. [s = exp (aT,)], (4.3) 

where an arbitrary multiple of 2.11: is omitted from Q and the constant a is determined 
later (see (4.14)). Then (4.2a-c) yield the leading-order balances 

from which the solutions have the form 

v̂  v̂  8, = v̂  tanh @), l? - - sech @), @ = +- @-so), (4.5a-c) " 4 8  4 a  

6 = { - B cosh2 @) + 2fd-l) coth @), (4 .5d)  

where v̂ , so, l? are unknown constants and necessarily @ is positive, as is v̂. This state, 
which is predominantly inviscid, persists for all positive @, except that as @+a 



242 F. T. Smith and P.  A .  Stewart 

FIQURE 5 .  Sketch (not to scale) of the cycle of states (i)-(iv) proposed in $4, for large times T, or 
for large distances X, in the spatial case referred to in $5 and figure 6 below. The corresponding 
amplitudes R, ,R,  and the effective phase qi during the re-cycling states are also shown. The 
maximum values of R,, R, are, in turn, sv̂  and sv^//1/8, where s = exp (aT,), v^ is a positive constant 
and v is given in (4.14), cf. figure 4(u-f). 

(corres onding to  increasing s and time T,) 6 grows indefinitely like -@ exp (2#), 
while l+fi then, and I ? , - t O  like fi exp ( - @ ) / 4 2 .  This leads into the next state, (ii). 

State (ii), where the phase function $ varies by an 0(1) amount, has the new 
expressions 

applying for a range in > a" > -in, with s increased by a logarithmic factor from its 
value in state (i). Here R,, R, reach their local maximum and minimum values, 
respectively, for each spike. The balances from (4.2) are 

R, = sfi+W,(s)+ ..., R, = BR,(s)+ ..., $ = &(s)+ ..., (4.6) 

. -  
u da" 
ds 
-- - -$fi cos (a"), (4.7c) 
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showing the entrance here of the viscous growth term. Hence we have the solutions 
(see also figure 5 )  

( 4 . 8 ~ )  

Rz(s) = A,lcos (d)l-i, (4.8b) 

(4 .8~)  R1(s) = -42; v^-llcos (ii)l-'+ (2-t-u) v^su-'+B,, 

where s,, A,, 8, are constants, with A, > 0. The match with the previous state (i) 
above is achieved as d +in - , s- 8, + - 00, as required, giving R,, , + T 00 in turn and 
fixing 2, = $$. As s (and T,) increases now, however, a new state is implied for even 
larger s, since as s--sl++ 00, El, ,+f 00 again, while the phase function ii+-$n from 
above. 

The subsequent state, (iii), is therefore similar to the earlier inviscid one (i), with 
s increased again, but it has 

R, = sB,(s)+ ..., R, = s ~ , ( s ) +  ..., $ = - $n++-' 6(s)+ ..., (4.9) 

instead of (4.3), which changes all the signs immediately following the equality signs 
in (4.4). So here (4.5a-d) hold again except that 

(4.10) 
v^ 

4u 
j 3 = - - ( s - s 0 ) ,  6 = { - B c o s ~ ~ @ ) - ~ K $ - ~ } c o ~ ~ @ ) .  

In consequence the range of increasing 8 from - 00 here reduces j3 from large positive 
values (where the join with the previous, viscous, state (ii) takes places) to zero+ 
[at a finite value so of a], whereupon 161 + 00, 2, + O +  and yet another new state, (iv), 
comes into play. 

During this next state (iv) the amplitudes R?,,  acquire their local minima and 
maxima, respectively, per spike, while the effective phase $ decreases from -3n to 
-in. The governing equations (4.2) reduce in essence to the forms 

(4.11b) 

R - d$ = 182 o v  '9 cos($). (4 .11~)  

Here, since R, is so $148 and large, to leading order, s is close to the value so, and 
R, 4 R,. Hence the local solutions are 

R, = A,lco~$I-~, (4.12 a) 

' dT, 

(4.12b) 

(4 .12~)  

with A, ( > 0), C,, D, being constants. The merging with the previous state (iii) above 
is then achieved as $f  -in, (T,-D,)+- 00, as required, and determines 
A, = (us + 2 ~ ) .  As (T, - D,) increases R,, R, pass through their minimum and 
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maximum values, after which, as (T2- D,) ++ co, R, increases indefinitely and R, 
decreases, with # approaching -$n from above. The solution then moves into the 
start of state (i) above, with # decreased overall by 2n, and so the cycle continues. 

That completes the large-time description, shown in figure 5, apart from the 
unknown growth factor u. This is determined from the overall integral constraint 

[#+Ri] = joTz [ x + R i ]  4 4 2  dT,+[kR;(O)+Ri(O)] (4.13) 

derived from the original equations (4.2u, b )  by eliminating sin # there. In the 
large-time cycle the dominant contribution to (4.13) comes from state (i), which to 
leading order gives Q$s2 on the left-hand side of (4.13) and $s21/2/16a on the right, 
for large s. Hence the growth rate is 

u = 1 / 4 2 .  (4.14) 

Another integral constraint should also be mentioned here, namely 

R, Ri cos # 
(iR: + Ri),Q = JOT' R, R;(+R: + R;)-,q-l 

x[{(&+l) (;R:+Ri)-2q ( Z 2 + R i ) }  - COS#+K(QR;+R~) sin#] dT,, (4.15) 

which holds for all p < f and brings in ( 4 . 2 ~ )  as well as (4.2a, b) .  The earlier studied 
account, referred to in the second paragraph of this section, turned out to be 
inconsistent with the combination of (4.13), (4.15), owing to the leading-order terms 
arising. In  contrast, the present proposal based on the states (i)-(iv) is found to be 
not inconsistent with (4.13), (4.15) because higher-order terms active in the viscous 
state (ii), for example, allow the extra freedom necessary to satisfy (4.15). 

Comparisons between the proposed large-time cycle (i)-(iv) and the computed 
results of $3 are quite affirmative. Figure 4(u-f) shows close-up views of the com- 
putations, for two step sizes, over a short interval at large time and the computed 
behaviour of the amplitudes R,, R, and effective phase # there appears well in line 
with the envisaged cycle depicted in figure 5. Also, the proposed ratio 4 8  = 2.828.. . 
of the maximum values of R,, R, at large times (from (4.5)) is close to the approximate 
value 2.821 of the ratio computed near time T, = 11.22 in figure 4 ( a ,  b).  Again, the 
plot in figure 4 (9) of the maximum values of R, and the times at which those maxima 
are attained, according to the numerical results, seems in accord with the ultimate 
growth rate of (4.14) as well as with the increasingly fast, exponential, rate at which 
the proposed cycle repeats itself. The plots of the minima in figure 4(g), and of the 
corresponding times, are less clear. They appear somewhat chaotic, as do the minima 
in figures 2 and 3 ; this may or may not be due solely to the computational difficulty 
of capturing the minima accurately, since the latter occur extremely sharply (both 
computationally and in the limiting proposal above) as opposed to the more gradual 
modulation during the rest of each cycle. 

Physically, there are several items of interest to record regarding the large-time 
cycle (i)-(iv) above. The first is the role of viscosity, through its linear-growth-term 
contributions proportional to R,, in (4.2a, b) .  These contributions remain significant 
overall at large times since they determine the maximum growth rate of the cycle, 
i.e. the constant cr in (4.14), despite being negligible in the internal dynamics of most 
of the cycle (i)-(iv). A similar phenomenon occurs in the companion works of Smith 
(1986a, b) .  Further on this point, although the ultimate large-scale behaviour (states 
(i) ,  (iii)) is broadly inviscid in nature, viscous forces are significant in the small/ 



The resonant-triad nonlinear interaction in boundary-layer transition 245 

fast-scale responses of states (ii), (iv) which provide a ‘rejuvenation’ of the nonlinear 
fundamental and subharmonic components, a rejuvenation which is essential to the 
continuing development of the flow. Secondly, the maximum growth rate of all the 
three waves IPoll, lPo21 = lP0J of the particular triad studied is CT = 1/42 ,  which is also 
the growth rate of the two-dimensional wave on linear grounds but is greater than 
the linear growth rate of the three-dimensional waves. This increase of the three- 
dimensional waves’ growth rate, owing to nonlinearity, represents in many senses the 
most important aspect of the nonlinear triad interaction: see also $5. Thirdly, the 
cycle proposed above shows a continual interchange and enhancing of energy taking 
place between the nonlinear modes, as time increases, with R,, R, being comparable 
in size during states (i), (iii), whereas R, is dominant in state (ii) and R, is dominant 
during state (iv), as the effective phase function q5 continues to fall. Fourthly, the 
solutions have a very chaotic appearance in some respects but this aspect seems of 
relatively little significance in the general trend of the solution, certainly compared 
with the enhanced spikiness which both the calculations and the analytically based 
cycle (i)-(iv) exhibit. Lastly here, there is the issue of whether the account (i)-(iv) 
can be generalized to three unequal modes, with Po, + Po,: i t  can, as the Appendix 
shows. Further comments, and comparisons with experiments, are presented in the 
next section. 

5. Further discussion, and comparisons with experiments 
5. 1. General discussion 

A number of comments (I-IV) should be made at this stage. First (Comment I), the 
resonant-triad three-dimensional interaction studied here arises ‘ sooner ’, i.e at lower 
amplitudes, than most other known types of three-dimensional interactions including 
those studied by Smith & Burggraf (1985) and Smith (1986a, b ) ,  for a given frequency 
of the incoming disturbance. This is much as Craik (1971) suggested, and a5 
experiments reveal (see below, particularly §5.2), and it can be seen by comparing 
the typical pressure amplitude, 0(1), of the triad in ( 2 . 6 ~ )  with the higher amplitude, 
O(i%), required in ( 3 . 2 ~ )  of Smith (1986b), for instance (see also the references just 
above). So (Comment 11) an incoming disturbance of sufficiently small amplitude 
encounters the triad response, and its enhanced interchanging of energy between 
modes [§4], ahead of the two-dimensional mechanisms of Smith ( 1 9 8 6 ~ )  or its 
three-dimensional counterpart in Smith (19863). On the other hand, however 
(Comment 111), the nonlinear growth of the triad is (a) not excessive, although still 
large [§4], and ( b )  almost bound to lead on, downstream, into the type of three- 
dimensional interaction studied in Smith (1986 b )  as the pressure amplitude rises from 
O( 1) to  O @ ) .  Moreover (Comment IV),  the three-dimensional interaction of the 
last-named paper then does exhibit excessive nonlinear growth [compared with (a) 
above] for oblique angles 8 exceeding tan-’ ( 4 2 )  = 54.7’, which includes the three- 
dimensional parts of the triad [in view of (2.5)] and could therefore accentuate them 
subsequently. Again (Comment V), an incoming disturbance of amplitude higher 
than in I1 above can by-pass the triad stage and enter the first stage [or, come to 
that, later higher-amplitude stages] of Smith & Burggraf (1985), Smith ( 1 9 8 6 ~ ’  b )  
directly. Finally (Comment VI),  other points with regard to sublayer bursting, 
secondary instabilities, the whole ensuing transition process, other starting flows, 
and further work, are as given in the references above. 

Concerning Comment I above, this work fully supports, on a rational basis, Craik’s 
(1971) suggestion of the existence of resonant triads in boundary layers. The only 
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rider we would add to that statement is this : the coefficients in the governing equa- 
tions, found in $2, are such that no finite-time breakdown can occur, thus ruling out 
one of the further suggestions of Craik (1971), so far at  least. The situation may be 
different for other starting flows such as three-dimensional ones or for other frequency 
regimes. In the meantime, however, we feel that, quite apart from other facets, even 
the mere testing and verification above of Craik’s physically motivated basic idea 
may add considerably to the value of the structural, and in particular the relatively 
high-frequency, theory used here and in related studies. 

Alternative mechanisms and possibilities do exist, as Smith & Burggraf (1985), 
Smith (1986a, b) and others note. These include the three-dimensional nonlinear 
interaction referred to in Comments I-V above; Herbert’s (1984a, b) suggested 
secondary instabilities and/or Squire modes, although these appear to have no 
rational basis so far and the distinction from the triad interaction for example is not 
yet clear ; multiple-mode interactions; higher-amplitude phenomena; and the 
alternative upper-branch type of scalings and processes, e.g. Gajjar & Smith (1985). 

Even within the context of resonant triads alone, there are still many further 
developments to be explored. For example, the solutions in $$3 and 4 and the 
Appendix are solely for the time-dependent problem, in (3.1); what happens for 
purely spatial dependence ‘1 To be sure, if only streamwise X, dependence is present 
in (2.31) then virtually the same results can be expected to hold, because of the signs 
in (2.31). Computations in this simplest spatial case, i.e. for the triad equations 

(1 - i) Pol - 2iP,, Po3, 2--- dPo1 - 1 

dX, 4 2  

seem to confirm the expectation, as shown in figure 6 where the spiky growing 
response produced downstream for large X, is analogous to that in the previous 
temporal cases and the nonlinear growth falls into line with the analogue of the 
result (4.14). For interest, figure 6 also shows the effects of a small change in the 
starting conditions. In keeping with the asymptotics of $4, there is some sensitivity 
to the starting conditions in absolute terms, and this becomes more pronounced as 
time or distance increases, inducing an enlarged shift of the solution, but the 
sensitivity is still relatively (and qualitatively) small since the overall solution is 
growing exponentially in any case. With pure cross-stream (2,) dependence, in 
contrast, a rather different coupled form comes out of (2.31), namely 

(5.2a) 

(5.2b) 

which has still to be investigated. Also, oblique waves dependent on a linear 
combination (Z, X, +p2 Z, -a, T,), say, need further study, although here on physi- 
cal grounds the group velocity represented by the _ _  coefficients on the left-hand side 
of (2.31) imposes restrictions on the constants a,, p,, Q,, which, as before, rule out 
the occurrence of finite-time singularities. Another matter is the phenomenon of 
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150 - 

100 - 

12.5 

FIGURE 6. Two computational solutions of the purely spatial case (5.1), plotted versus X,: for 
Pol, ,, = 1 + i ,  0.5,0.49 at X, = 0, -, Pol ; - - -, Po3, 0, Po, : for Pol, ,, = 1 + i ,  0.5,0.5 at X ,  = 0, 
x , Pol; + , Poa; + , Pop. Also shown for comparison, 88 curves L,, L,, are the predicted exponential 
growths exp (X, /2 . \ /2)  from the spatial analogue of the result (4.14) for large distances downstream. 

‘detuning’, referred to in the experiments of Saric et al. (1984) and in private 
communications with Dr A. D. D. Craik (1985), associated with a slight difference 
ASZ between the incident frequency and the exact value for resonance taken in $2. 
In the context of multiple scales this can be accommodated to some extent by 
considering disturbances proportional to exp ( -iSZ, T,), times functions of X,, say, 
in (2.31), with the constant 52, representing the detuning AD. There are various 
generalizations or alternative cases of detuning. One example is for disturbances 
proportional to exp (ia, X,+ip, T,) where, in effect, (2.31 a-c)  reduce to the nonlinear 
ordinary differential system 

(5.3a) 

(5.3b) 

(5.3c) 

This is also discussed in the Appendix. Still more general are the partial differential 
systems for initial-value or forced problems, where (e.g.) Pol, Po,, Po3 in (2.31) are 
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specified as functions of X, and/or 2, initially. Here preliminary calculations by 
the current authors, for the case of X,,T, dependence being present, showed a 
two-humped form tending to emerge downstream as time increases (see also Kaup, 
Riemann & Bers (1979), Kaup (1981), Wersinger, Finn & Ott (1980) -references 
which were kindly pointed out to  us by Dr A. D. D. Craik - and Craik (1985), Weiland 
& Wilhelmsson (1977) and references therein) but with substantial growth and 
spikiness also occurring, much as in $53 and 4. A further extension to three 
three-dimensional waves, rather than the two-dimensional-plus-two-three-dimen- 
sional coupling in (2.3), is also of interest. Extra scales intermediate between 
(ToX,,Zo) and ( T , , X , , Z , )  in (2.1), which arise in the studies by Smith & Burggraf 
(1985), Smith (1986a, b ) ,  do not seem relevant here, however. Throughout all these 
extensions of the present study, a major question to be answered (see also the 
Appendix) concerns the nonlinear growth rates: can they exceed that found in $4 ? 
And, whether the answer is ‘yes’ or ‘no’, what happens afterwards? 

What happens afterwards can be anticipated reasonably well for special cases like 
those in $53 and 4 and the Appendix, in fact. The higher-amplitude stage (called stage 
1) discussed in the three last-named references comes into operation next, as indicated 
in our earlier Comments (11)-(IV), but with three three-dimensional modes present. 
For, from $4, each mode in the triad grows typically like exp(aT,) in amplitude, 
accompanied by the spiky and significant contracting proportional to exp (aT,) in its 
temporal scale. So (Comment VII), when exp (aT,) --z O ( G ) ,  i.e. at the later time 

T, - (2a)-l lnQ, (5.4) 

the so-called stage 1 of the three references immediately above is encountered, 
because of the pressure rise; and meanwhile the current two timescales 
(To, T,) = (QT, T) in (2.1) split into three (To, TI, T,) = (QT, aT, T), exactly as 
required for that stage 1.  Other frequency domains (e.g. Q+Rei)  andlor increased 
distance downstream may lead on to later stages of transition, perhaps the most 
significant subsequent stage being the Euler stage of length- and timescales O(Red) ,  
to which all eventual growth mechanisms, be they two- or three-dimensional, 
secondary or inflexional, appear to  lead. 

5.2. Comparisons with experiments 
Finally, let us compare the above theoretical picture, and especially the Comments 
(1)-(VII), with the recent experimental findings, particularly those of Saric et aE. 
(1984) and Kachanov & Levchenko (1984). The stations at which resonant triads and 
other significant three-dimensional action are first found to  arise experimentally are 
indicated in figure 4 of Saric et al., for example, and are quite well beyond the 
lower-branch neutral curve, in line with the present high-frequency assumption. There 
is clear evidence then of subharmonic growth. Saric et al.’s figures 1-3 and subsequent 
ones show also a ‘window’ effect for the occurrence of the triad [here see also the 
recent computations by Herbert (1984a, b)  and Malik (1986)], with the successive 
input of disturbance sizes of 0.3 %, 0.4 yo and 1 % producing, in turn, so-called C-type, 
H-type and K-type responses [after Craik, Herbert and Klebanoff (Klebanoff, 
Tidstrom & Sargent 1962) respectively]. This tends to provide good experimental 
confirmation of the successive/increased-amplitude processes envisaged theoretically 
in Comments (1)-(VII) above, since we would indeed associate the C-type response 
with the present study (pressure amplitude of O(1)); then perhaps associate the 
H-type response with the next stage 1 of Smith & Burggraf and Smith (1986a, b ) ,  
with the pressure amplitude raised to  O ( G )  [note, however, the reservations a t  
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FIQTJRE 7. Comparisons with the (nonlinear) experiments of Kachanov & Levchenko (1984). (a), 
( b )  The growths [versus distance 21 of phase and amplitude for the fundamental and subharmonic 
components : 0 0 0 0 (fundamental), (subharmonic) experiments; - - -, theory, from 
(4.14) combined with the triple-deck scalings. (c), (d )  compare representative experimental values 
(0 0 0 0, with typical scatter/reading error shown 1 ) of the subharmonic amplitude and phase 
with the theory (-), versus normalized/slow time, using figure 17 (b )  of Kachanov & Levchenko 
(1984) and figures 4(c), 4(f) ,  5 of the present paper. 

present with respect to the H-type interaction in an earlier paragraph] ; and then 
associate the K-type response with the subsequent stage 2 (pressure amplitude raised 
to O(Q)) or Euler stage of the last three references above. Again, the increased growth 
observed in the three-dimensional component during the C-type response, e.g. in 
figure 9 of Saric et al., is not inconsistent with the theoretical prediction (4.14) of a 
relative increase by a factor of 1 / 2 .  Finally here, the wave angle 8 at which the C-type 
behaviour is observed is quoted as 53-63' by Saric et al. (including the experiments 
of Kachanov & Levchenko (1982) and Saric & Thomas (1984)), which ties in 
reasonably well with the predicted angle of 60" in (2.5) : see also Smith & Burggraf 
and Smith (1986a, b). 

In  more detail, and concerning now the experiments of Kachanov & Levchenko 
(1984), more quantitative agreement with the theory is found. First, there is good 
broad agreement with all of the main figures 5-10,12,13,15,17,2(r23 of Kachanov 
& Levchenko (1984) as regards the phases and amplitudes of the two- and three- 
dimensional components, whether for free (natural) or forced (controlled) subhar- 
monics upstream. Secondly, many of the remarks made by Kachanov & Levchenko 
(1984) accord with the theory: thus (on their page 216) 'a subharmonic amplitude 
changes continuously and its phase remains practically constant between its 180' 
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jumps. The phase jumps take place when the amplitude crosses the zero value', cf. 
$4; and (their page 224) 'a practically exponential growth of the subharmonic 
amplitude is observed, the amplification rates being much larger than those in the 
linear theory', cf. $4; later (on their page 224). 'Then ... large deviations of 
fundamental wave amplification rate from a linear law and a large deformation. . .are 
observed, which indicates the onset of the breakdown of the laminar regime', cf. 
Comments III-V, VII of this section. Thirdly, Kachanov & Levchenko (1984) (pp. 
221, 235) record a typical wave angle of approximately 63" for resonance, relatively 
close to the prediction (2.5) of 60" (and relatively far from the alternative theoretical 
predictions noted on their page 221). Our figure 7 (a ,  b)  compares the experimentally 
observed growths of the phase and amplitude of the two- and three-dimensional 
components [from Kachanov & Levchenko (1984), figures 10,131 with the theoretical 
result given in (4.14) for the ultimate growth. The quantitative agreement in the 
behaviour downstream is encouraging. Moreover, a closer smaller-scale comparison 
between the experimental measurements of amplitude and phase, and the corre- 
sponding theoretical findings from $$3 and 4, is also presented in figure 7 (c, d). The 
agreement again seems favourable. I n  addition we notice how, in the experiments, 
the times of relatively rapid change in phase correspond well with the times at which 
the subharmonic amplitude reaches a local minimum; this is as the theory ($4 and 
figures 4 and 5) predicts. Overall, therefore, both large- and small-scale comparisons 
between the theory and the experiments appear quite encouraging indeed. 

The interest, comments and encouragement of Drs M. J. Werle, J. E. Carter, 
M. Gaster, A. D. D. Craik, M. Blair and R. E. Whitehead are gratefully acknowl- 
edged, as are. the referees' comments. Support for F. T.  S. as a consultant with United 
Technologies Research Center was kindly provided by the UT independent research 
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Appendix. Generalizing the limiting form of $4 
I n  $4 it was assumed for convenience that Po, = Po,. So in this Appendix the 

general case (3.1) where Po, + Po, is considered, for large times, and the extra effects 
of detuning as represented by (5.3) are also incorporated. I n  (5.3) we put 

P,,=R,exp(iv,), f o r % =  1 ,2 ,3 ;  $ = v z + v , - v l ;  (A 1) 

and then the nonlinear equations (with ' = d/dT,) 

(A 2) 

(A 3) 

R 
d 2  

R; ='+2R,R,sin$, 

R; = +R,-aRl R, sin$, 

R j  = +R3 - +Rl R, sin $, 

govern the real functions R,, $. Here i= = ~ + + a , .  
Our first attempt at generalization took I?, ( x  S-~R,) to be different from I?, in 

(4.3) and (4.9), during states (i) and (iii), and indeed an apparently self-consistent 
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account can then be constructed. However, the initial-value problem suggests 
otherwise, in fact, since the integral constraint 

where 
'1 Ri- Ri = A* exp (T,), 

A* = Ri(0)-  Ri(0) J 
holds from (A 3) and (A 4). This simplifies matters because it requires the difference 
between Ri and Ri to be no more than O[exp (T,)]. Therefore, as R,2, , in (4.3), (4.9) are 
typically O[exp (2vT,)] and so are larger than O[exp (T,)] ,  it follows that the states 
(i) and (iii), as described by (4.3)-(4.5), (4.9)-(4.10) with T replacing K ,  remain 
essentially intact to leading order, and l?, = l?,, even in the present generalized 
version. Here (4.14) still fixes cr, the growth rate. The same considerations apply to 
state (iv) since there R,, , [in (4.11)] are both so large that again the right-hand side 
of (A 6) is negligible to leading order. Only state (ii) of the cycle is altered much. 

State (ii) occurs sooner now, namely when R,, , both fall to O[exp (!jT,)] and the 
right-hand side of (A 6) comes into operation. Now we have effectively 

R, = ~ v ^ + s ~ ~ - ' R , ,  R8, , = sU R,, ,, $ = O ( l ) ,  (A 7) 

in place of (4.6). So'the governing equations for state (ii) are 

and the constraint (A 6) requires 

IQ-8; = A*. (A 9) 

The solution of (A 8) can be written in the form 

where 

R,(s) = C', cosh ( g ) ,  
8,(s) = C', sinh @), 

cos ($(s)) = 8, cosech (29), 

4c; 8 , ( s )  = p l - y  sinh2 (ri;), 
V 

is positive, c,, B,, pl, s2 are constants, 8, > 0, and C,Z = A*. Matching with state (i) 
is achieved as #-+fn-, s +- 00, with @+ 00, 8,, ,+ 00 and the difference between 
8,. 8, becomes negligible then, in line with our earlier remarks. At the other extreme, 
$+-in, s+ 00 and 9, 8,, , behave similarly to the previous limit, so leading on to 
state (iii). During state (ii), therefore, R,,, reach their minimum values of order 
exp (!jT,) and R, attains its maximum value. 

The altered state (ii) above seems to tie in with the calculation in figure 2, given 
that in the calculation the value of C, is d24. The maximum values of R,, , per spike 
are coming closer together as time increases, subject to the quite large correction of 
24exp (T,) in the difference of the squares. 

The detuning present can have only one main effect, we note, for K in (4.4)-(4.5) 
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and (4.10) is replaced by r. Hence it is possible for certain detunings to restrict the 
range of the effective phase q5 by means of the alterations to (4.5) and (4.10). This 
seems a relatively minor aspect here, however. Overall, the account in $4 is altered 
little in the general case of (3.1) or (5.3), and in particular the result (4.14) for the 
growth rate continues to hold. 
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